ECONOMIC APPRAISAL OF ENDANGERED PLANT SPECIES

James A. Duke¹

"Die when I may, I want it said of me by those who know me best, that I plucked a thistle and planted a flower, wherever I thought a flower would grow."2

Asked to evaluate economically the candidate list for endangered at threatened plant species in the continental United States, I faced to problems, (1) paucity of economic data on endangered species, difficulty in eliminating personal biases. The first problem was eleviated by taking a generic approach; the second, by objectively signing two novices to the compilation. Mary Cepko and Janet Kluve re new to economic botany and had developed no biases. They were mumissioned to compare the candidate species with a cosmopolitan useful ant list and a cosmopolitan weed list we had not used before.

First we alphabetized the list of genera with "listed" species. "listed" species, I define as a species among the proposed candidates r the threatened or endangered species lists. A "listed" genus, I fine as a genus containing one or more "listed" species. Then we nsulted Usher's A DICTIONARY OF PLANTS USED BY MAN'S and counted the eful species in each "listed" genus. This number, a crude index of e world's useful species in each genus, is recorded in Table 1. No menclatural cr taxonomic judgments were made. If a useful species was ted under a "listed" genus, the useful species was counted. Then we onsulted a composite world weed index compiled by Sandy Lyon and buAnne Morehead⁶ by merging the WSSA Weed List (1971), C. R. Gunn's⁸ published list of noxious weed seeds of the 50 States, John Dickson's published list of tropical weeds in 8 different banana growing areas, id Clyde F. Reed's 10 unpublished list of more than 1000 species of weeds cotic to the United States. The number of weed species in "listed" genera this Composite List is also reported in Table 1. For example, Abutilon th a score of 12+ and 3- has 12 useful species in Usher, and 3 weed pecies in the Composite List. This might be further taken to indicate nat this genus has more "virtues than vices," that it has a positive conomic value. On the other hand, Agrimonia with 1 useful species and weed species has a negative economic score.

An obscure species in a genus is more likely to share the economic otential of the genus as a whole, than that of another genus. Hence able 1 objectively hints at the economic potential of a genus, and ence of an obscure listed species in that genus. If a species is obscure ecause of a relict or refugium distribution, it might be argued that t constitutes no weed threat in immediate geological time. However, if he limited distribution of an endangered species is due to recent volution rather than gradual extinction, the species could have weed otential. Weeds cost America about 5 billion dollars per year. About 5% of the worst weeds in the United States are introduced species. At one ime, these weeds also had a very limited distribution in the United

21

States. If their overseas population had not been known to the student of the American population, these first invaders might well have been classified as endangered species.

Three arguments have been raised for conservation of the "listed" species and I believe all have some merit. I list these in what I think is descending order of economic importance. (1) They could have (an unknown and unpredictable) economic potential in their germplasm (nearly 35% of the listed genera, e.g., have one or more species which have shown some activity in R. E. Perdue's ll cancer screening program). (2) Species diversity makes an ecosystem more stable. (Diversity could be maintained in a given habitat by substituting a useful species for an endangered species with lesser economic potential. The Plant Taxonomy Laboratory is developing a system using non-endangered plant species as indicators of habitats suitable for endangered species). (3) The preservation of endangered species contributes to the preservation of a natural ecosystem. Are there any natural ecosystems? Are they better than artificial ecosystems? In whose eyes? For worse or better, some Americans prefer a lawn to a savanna, an orchard to a woodlot, and a pine plantation to a virgin forest. There are good reasons for maintaining all these habitats. But Man's introduced exotics have probably crept into nearly all habitats of the United States, so that the natural habitat is already tainted. Is it natural for man to preserve artificially a species that would have suffered extinction naturally? Is it natural for man to increase artifically the numbers of endangered species to the point that some unpredicted weed potential might be unleashed? Whether the answer to these questions is positive or negative, economic criteria should be considered along with aesthetic criteria in determining which habitats and "listed" species deserve more research and more protective measures. We probably have the expertise to save and increase most or all of the "listed" species. But which should be increased? Economic evaluation is important in establishing priorities.

Duke and Terrell¹² list 1000 species in their Crop Diversification Matrix. Only 0.3% of those "crop" species are "listed," Juglans hindsii, Limmanthes bakeri, and a variety of Limmanthes douglasii. Cross checking the "listed" species with the WSSA list, we find only two "listed species: Ceanothus cyaneus and Taxus floridana, on both lists. Although Taxus may be poisonous to cattle, many people, perhaps even the WSSA, would not consider it a weed. In the WSSA list, tree species are included which are not necessarily weeds. Perhaps their composite weed list contains some species which some of their contributors would not regard as weeds. Subtaxa of 14 other "weed" species are "listed", a subspecies of Artemisia cana, Stillingia sylvatica, and varieties of Cerastium arvense, Chrysothamnus nauseosus, Croton glandulosus, Erigeron pulchellus, Ilex opaca, Opuntia imbricata, Oryzopsis hymenoides, Persea borbonia, Quercus shumardii, Rhus trilobata, Rudbeckia triloba, and Sporobolus neglectus.

Some of the tallies in Table 1 surprise me. Usher seems to give more weight to obscure medicinal and ritual than to ornamental uses! I

uld give Helianthus a positive score, since it contains 3 rather portant vegetables, artichoke, sunchoke, and sunflower. Usher cites species of Antirrhinum, the snapdragon genus, but H. M. Cathey, legests that the annual value of the snapdragon industry in the United ates is in excess of 10 million dollars. I would give Antirrhinum positive (useful) score, but Table 1 scores it neutral. Many of the ass genera (e.g., Digitaria) have more negative (weed) then positive seful) species according to the Table, but I would give them a positive fore because of their potential for fodder and forage.

With these reservations in mind, and remembering that a useful pecies is defined only as one cited by Usher, and a weed is defined ly as one cited in one of four weed lists, I summarize the table. the more than 500 genera with "listed" species, only about 8% score rictly negative (on at least one weed list, no useful reports), 15% are rictly positive (some useful species, none on weed lists), 25% have more gative than positive scores, while 34% have more positive than negative becies. The largest category, 41%, represents neutral genera, with as my useful species as show up on the weed lists. Three-fourths of the enera have positive or neutral scores, only one-fourth have negative cores. Without further study, I would give higher priority to the ndangered species in strongly positive genera, lesser priority to ne threatened species in strongly negative genera.

Footnotes

Thief, Plant Taxonomy Laboratory, Plant Genetics and Germplasm Institute, Agricultural Research Service, Beltsville, Maryland 20705. Abraham Lincoln, as quoted by E. L. Knake, 1975. Weed Science 23(3): 252. Department of Interior, Fish and Wildlife Service. 1975. Threatened or Endangered Fauna or Flora. Review of Status of Vascular Plants and Determination of "Critical Habitat." Federal Register 40(127) Part V: 27824-27924.

Biological Aids, Plant Taxonomy Laboratory. Jsher, George. 1974. A Dictionary of Plants Used by Man. Constable and

Co., Ltd. London. 619 pp.

Clerk Typists, Plant Taxonomy Laboratory.

WSSA (Weed Science Society of America) 1971. Composite List of Weeds. Weed Science. 19(4): 435-476.

Research Botanists, Plant Taxonomy Laboratory.

Botanist, Estacion Experimental La Lima, La Lima, Honduras.

Ocollaborator, Plant Taxonomy Laboratory.

Chief, Medicinal Plant Resources Laboratory, Plant Genetics and Germplasm Institute, Agricultural Research Service, Beltsville, Maryland 20705. Information provided by Dr. A. S. Barclay of that Laboratory.

²Duke, J. A. and E. E. Terrell. 1974. Crop Diversification Matrix:

Introduction. Taxon 23(5/6): 759-799.

Chief, Ornamentals Laboratory, Plant Genetics and Germplasm Institute, Agricultural Research Service, Beltsville, Maryland 20705.

ABRONIA		BACOPA	1+ 3-	CHIONANTHUS	1+
ABUTILON	12+ 3-	BAHIA		CHLORIS	1+ 8-
ACAC IA	76+ 10-	BALDUINA		CHLOROGALUM	1+ 1-
ACANTHOMINTHA		BALSAMORHI ZA	3+	CHOISYA	
ACER	13+ 10-	BAPTISIA	3+ 1-	CHOR I ZANTHE	
ACLE I SANTHES		BARTONIA		CHRYSOTHAMNUS	2+ 6-
ACONITUM	13+ 1-	BERBERIS	11+ 4-	CIMICIFUGA	2+
AGALINIS		BLENNOSPERMA		CIRSIUM	9+ 15-
AGASTACHE	2+	BOLTONIA	1+	CLARKIA	
AGAVE	22+ 2-	BONAMIA	_	CLAYTONIA	5+
AGRIMONIA	1+ 3-	BOTHRIOCHLOA	2+ 1-	CLEMATIS	9+ 4-
AGROSTIS	2+ 4-	BOTRYCHIUM	Ī+	CLEOME	7+ 5-
ALETES	2. 4	BRAYA	*	CLITORIA	3+ 1-
ALLIONIA	1-	BRAZORIA		COLLINSIA	1+ 1-
ALLIUM	27+ 8	BRICKELLIA	I+	COLLOMIA	1-
	12+ 6-	BRODIAEA	I+		4+ 1-
ALNUS				COLUBRINA	
AMBROSIA	6+ 6-	BROMUS	6+ 19-	COMMELINA	16-
AMOREUXIA		BRONGNIARTIA		CONDALIA	3+ 2-
AMORPHA	1+	BUCKLEYA		CONRADINA	
AMPLIANTHUS		BUMELIA	3+ 2-	CORDYLANTHUS	1+
AMSINCKIA	3-	CACALIA	1-	COREOPSIS	2+ 1-
AMSONIA		CAESALPINIA	20+ 3-	CORYDALIS	4+ 1-
ANCISTROCACTUS		CALAMAGROSTIS	1-	CORYPHANTHA	
ANDRACHNE		CALAMINTHA	2+ 3-	COURSETIA	1+
ANDROPOGON	11+ 15-	CALAMOVILFA	I+	COWANIA	I+
ANEMONE	1I+	CALL I ANDRA	3+	CRATAEGUS	12+ 6-
ANGELICA	11+ 1-	CALLIRHOE	3+	CROOMIA	
ANTENNARIA	3-	CALOCHORTUS	5+	CROSSOSOMA	
ANTHERICUM		CALYSTEGIA	1+	CROTON	24+ 9-
ANTIRRHINUM		CAMASSIA	2+	CRYPTANTHA	
APIOS	1+ I-	CAMISSONIA		CTENIUM	
AQUILEGIA	2+ 1-	CAMPANULA	3+ 2-	CUCURBITA	5+ 3-
ARABIS		CARDAMINE	4+ 3-	CUPHEA	1+ 2-
ARCEUTHOBIUM		CAREX	12+ 19-	CUPRESSUS	8+
ARCTOMECON		CARPENTERIA		CUSCUTA	I+ 24-
ARCTOSTAPHYLOS	5+ 12-	CASSIA	32+ 17-	CYCLADENIA	
ARENARIA	2+ 1-	CASTANEA	7+ 2-	CYCLODON	
ARGEMONE	2+ 4-	CASTILLEJA	2-	CYMOPHYLLUS	
ARSYTHAMNIA	2. 4	CAULANTHUS	Ī+	CYMOPTERUS	5+ 1-
ARISTIDA	1+ 4-	CAULOSTRAMINA	4.	CYPERUS	23+ 35-
ARNICA	2+	CEANOTHUS	2+ 13-	CYPRIPEDIUM	1+
ARTEMISIA	26+ 23-	CENTAURIUM	2+ 13-	DALEA	4+
ASCLEPIAS	17-	CENTROSEMA	2+ 3-	DARLINGTONIA	4.
	2+		1+ 3-		
ASIMINA		CERASTIUM		DASYNOTUS	7. 17
ASPLENIUM	2+ I-	CERCOCARPUS	3+ 3-	DELPHINIUM	7+ 13-
ASTER	2+ 14-	CEREUS		DESMODIUM	10+ 13-
ASTRAGALUS	32+ 24-	CHAENACTIS		DICENTRA	2+
ASTRANTHIUM		CHAETOPAPPA		DICERANDRA	
ATRIPLEX	10+ 17-	CHAMAESYCE		DIGITARIA	10+ 21-
AUREOLARIA		CHEILANTHES	1+	DIONAEA	

DIPLACUS		GALACTIA	1+ 1-	HYMENOXYS	2-
DITAXIS	1+	GALINSOGA	1+ 2-	HYPERICUM	6+ 9-
DODECATHEON	1+	GALIUM	2+ 9-	HYPOXIS	1+
DOUGLASIA	-	GAURA	6-	ILEX	20+ 5-
DRABA	1-	GAYA		ILIAMNA	20. 5
DUDLEYA	-	GENISTIDIUM		ILLICIUM	3+
DYSCHORISTE		GENTIANA	5+ 1-	IPOMOEA	42-
DYSSODIA	1-	GEOCARPON		IRIS	11+ 3-
ECHEVER1A		GERANTUM	7+ 11-	ISOETES	1+
ECHINACEA	2+	GEUM	2+ 2-	ISOTRIA	-
ECHINOCACTUS	1+	GILIA	2+	IVESTA	
ECHINOCEREUS	3+	GILMANIA		JACQUEMONT IA	1+ 2-
ELEOCHARIS	4+ 16-	GLAUCOCARPUM		JAMESIANTHUS	
ELLIOTTIA	, 10	GLYCERIA	1+ 6-	JUGLANS	14+ 3-
ELYTRARIA	1+	GNAPHALIUM	3+ 16-	JUNCUS	4+ 18-
ENCELIA	1+ 1-	GRAMMITIS		JUSTICIA	1+ 6-
ENCELIOPSIS		GRAT1OLA	1+ 4-	KALMIA	1+ 3-
ENCYCLIA		GRINDELIA	2+ 1-	KOSTELET2KYA	1+ 1-
EPHEDRA	11+ 2-	GUTIERREZIA	1+ 4-	LACHNOCAULON	
EP1LOBIUM	1+ 3-	GYMNOCARPIUM		LAPHAMIA	
EPITHELANTHA		GYMNOPOGON		LASTHENIA	
ERAGROSTIS	4+ 20-	HACKELIA	1-	LATHYRUS	15+ 12-
ERIASTRUM		HALIMOLOBOS		LAVATERA	2+ 2-
ERIGERON	2+ 8-	HAPLOPAPPUS	2+ 5-	LAYIA	
ERIOCAULON	4-	HARPEROCALLIS		LEAVENWORTHIA	
ERIOCHLOA	2+ 2-	HARTWRIGHTIA		LECHEA	
ERIODICTYON	2+	HEDEOMA	1+ 1-	LEGENERE	
ER10GONUM	4+ 1-	HEIMIA		LEPANTHOPSIS	
ERIOPHYLLUM		HELENIUM	2+ 5-	LEPIDIUM	6+ 11-
ERRAZUR1ZIA		HELIANTHELLA		LEPTODACTYLON	
ERYNGIUM	12+ 11-	HELIANTHEMUM	1+	LESPEDEZA	4+ 5-
ERYSIMUM	1+ 4-	HELIANTHUS	6+ 7-	LESQUERELLA	1-
ERYTHRONIUM	3+	HELIOTROP1UM	4+ 18-	LEWISIA	1+
ESCHSCHOL2 IA	1+ 1-	HEMI ZONI A	1-	LIATRIS	3+
EUPATORIUM	14+ 15-	HESPEROLINON		LILIUM	20+
EUPHORBIA	36+ 37-	HETEROTHECA	I -	LIMNANTHES	
EURYTAENIA		HEUCHERA		LIMONIUM	1+
EUTREMA	1+	HEXALECTRIS		LIMOSELLA	
FEROCACTUS	2+	HEXASTYLIS		LINANTHUS	
FESTUCA	5+ 5-	HIBISCUS	17+ 6-	LINDERA	3+ 1-
FILIPENDULA	1+	HIERACIUM	1+ 7-	LINDERNIA	1+ 6-
FIMBRISTYLIS	3+ 9-	HOFFMANNSEGGIA	1+ 1-	LINUM	5+ 7-
FORESTIERA	1+ 3-	HOLOCARPHA		LISTERA	
FORSELLESIA		HORKELIA		LITSEA	8+
FOTHERGILLA		HOUSTON1A		LOMATIUM	5+ 1-
FRANKENIA	4+	HUDSONIA		LOTUS	1+ 5-
FRASERA	1+	HULSEA		LUINA	
FRAXINUS	11+ 8-	HYDROPHYLLUM	3+	LUPINUS	5+ 11-
FREMONTODENDRON	1+	HYMENOCALLIS	1+ 1-	LYCIUM	8+ 6-
FRITILLARIA	5+	HYMENOPAPPUS	2+	LYONOTHAMNUS	

LYTHRUM	1+ 5-	OXYTROPIS	5-	PRENANTHES	2+
MACBRIDEA		PANICUM	21+ 48-	PRIMULA	3+
MACHAERANTHERA	2+	PAPAVER	3+ 4-	PROBOSCIDEA	1-
MAGNOLIA	10+	PARNASSIA		PRUNUS	32+ 10-
MALACOTHAMNUS		PARONYCHIA	2+ 1-	PSEUDOBAHIA	32. 10
MALACOTHRIX		PARRYA	2. 1	PSORALEA	8+ 3-
MAMILLARIA	1-	PARTHENIUM	3+ 1-	PTILIMNIUM	0T J=
	7+ 1-	PARVISEDUM	3₹ 1-	PUCCINELLIA	1. 7
MANIHOT	/+ 1-		2.		1+ 3-
MANISURIS		PECTIS	2+	PYCHANTHEMUM	
MARGARANTHUS		PEDICULARIS	2+ 1-	PYXIDANTHERA	
MARSHALLIA		PEDIOCACTUS		QUERCUS	60+ 45-
MATELEA		PENSTEMON	1+ 3-	RAILLARDELLA	
MAURANDYA		PENTACHAETA		RANUNCULUS	5+ 20-
MELANTHERA		PERIDERIDIA		RHAPIDOPHYLLUM	
MENTZELIA	1+ 1-	PERITYLE		RHEXIA	
MERTENSIA	1+	PERSEA	6+ 2-	RHINANTHUS	5-
MICRANTHEMUM		PERSICARIA	1-	RHODODENDRON	4+ 6-
MICROSERIS		PETALONYX	•	RHUS	21+ 14-
MIMULUS		PETALOSTEMUM	2+	RHYNCHOSIA	4+ 3-
MIRABILIS	1+	PETERIA	2+	RHYNCHOSPORA	1-
	3+	PETROPHYTUM		RHYSOPTERUS	1-
MONARDA	1+		1. 0		14. 05
MONARDELLA	1+	PHACELIA	1+ 2-	RIBES	14+ 27-
MONOTROPSIS		PHILADELPHUS	1+	RORIPPA	6-
MUHLENBERGIA	1+ 4-	PHIPPSIA		ROSA	11+ 10-
MUILLA		PHLOX	1+	ROYSTONEA	2+
MYRCIANTHES		PHYLLANTHUS	4-	RUBUS	40+ 19-
MYRIOPHYLLUM	5-	PHYLLITIS	1+	RUDBECKIA	5-
NAMA	1-	PHYSARIA		RUELLIA	2-
NAVARRETIA	2-	PHYSOSTEGIA	1-	RUMEX	17+ 29-
NEMACLADUS		PIERIS	-	SAGITTARIA	2+ 9-
NEMASTY		PINCKNEYA	1+	SALIX	19+ 13-
NEOLLOYDIA		PINGUICULA	1+	SALVIA	19+ 14-
NEOPARRYA		PITYOPUS	1.	SANICULA	2+
NEOSTAPFIA		PLAGIOBOTHRYS		SARRACENIA	2+
			1.	SATUREJA	_
NESTRONIA		PLATANTHERA	1+		5+
NEVIUSIA		PLEUROPOGON		SAXIFRAGA	3+
NITROPHILA	~ ^	PLUMMERA		SCHISANDRA	
NOLINA	3+ 2-	POA	11+ 15-	SCHI ZACHYRUM	1-
NOTHOLAENA		POGOGYNE	1+	SCHI ZAEA	
NUPHAR	3+	POLEMONIUM	2+ 1-	SCHOENOLIRION	
OENOTHERA	1+ 6-	POLIANTHES	1+	SCIRPUS	9+ 17-
ONOSMODIUM		POLYGALA	17+	SCLEROCACTUS	
OPHIOGLOSSUM	4+	POLYGONELLA		SCROPHULARIA	2+ 2-
OPUNTIA	19+ 14-	POLYGONUM	17+ 49-	SCUTELLARIA	2+
ORCUTTIA		POLYSTICHUM	1-	SEDUM	7+ 5-
OROBANCHE	4+ 3-	POPULUS	13+ 10-	SELENIA	, ,
ORTHOCARPUS		POROPHYLLUM	15. 10-	SENECIO	14+ 24-
ORYZOPSIS	1+ 1-	PORTULACA	5+ 3-	SHORTIA	14. 24-
OSTRYA	3+ 1-	POTAMOGETON	1+ 21-	SIBARA	1-
0.0111111	3+ 1-				_
OXYPOLIS		POTENTILLA	9+ 13-	SIDA	4+ 12-

SIDALCEA		TRAGIA	1-
SILENE	3+ 11-	TRICHOSTEMA	1-
SILPHIUM	2+ 1-	TRIFOLIUM	24+ 12-
SISYMBRIUM		TRILLIUM	24+ 12-
	3+ 11-		1-
SIUM	3+ 2-	TRIPHORA TRIPSACUM	2+ 2-
SMELOWSKIA	20. 5		2+ 2-
SMILAX	20+ 7-	TRITELEIA	
SOLANUM	42+ 30-	TROLLIUS	
SOLIDAGO	10+	TROPIDOCARPUM	
SOPHORA	8+ 9-	URTICA	9+ 7-
SPHAERALCEA	1+ 4-	VACCINIUM	19+ 8-
SPHENOSTIGMA		VALERIANA	5+
SPIGELIA	4+ 2-	VANCOUVERIA	
SPIRANTHES	1+	VANQUELINIA	
SPOROBOLUS	4+ 10-	VERATRUM	3+ 4-
STACHYS	5+ 7-	VERBENA	2+ 7-
STEIRONEMA		VERBESINA	2+ 2-
STELLARIA	1+ 3-	VERNONIA	12+ 7-
STENANDRIUM		VERONICA	4+ 17-
STEPHANOMERIA	1-	VIBURNUM	6+ 7-
STILLINGIA	1+ 1-	VICIA	15+ 13-
STIPA	6+ 11-	VIGUIERA	2-
STREPTANTHUS		VIOLA	5+ 10-
STYRAX	7+	WALDSTEINIA	
SUAEDA	2-	WAREA	
SULLIVATIA	_	WILLKOMNIA	
SWALLENIA		WOODSIA	
SYMPHORICARPOS	1+ 3-	WYETHIA	2+ 1-
SYNANDRA	1. 3	XYRIS	4+
SYNTHYRIS		ZAMIA	4+
TAGETES	4+ 1-	ZANTHOXYLUM	16+ 3-
TALINUM	4+ 3-	ZEPHYRANTHES	1+ 1-
TANACETUM	1+ 2-	ZIZANIA	2+ 2-
TARAXACUM	3+ 7-	ZIZIA	2, 2-
TAUSCHIA	3+ /-	4141A	
TAXUS	4. 2		
	4+ 2-		
TECTARIA	2+		
TEPHROSIA	9+ 1-		
TETRACOCCUS			
THALICTRUM	5+ 2-		
THELOCACTUS			
THELYPODIUM			
THERMOPSIS	1+ 2-		
THLASPI	1+ 2-		
THYSANOCARPUS			
TOFIELDIA			
TORREYA	3+ 1-		
TOWNSENDIA			
TRACYINA			
TRADESCANTIA	1+ 3-		

Table 1. Economic Evaluation of Genera with Endangered or Threatened Species (__+, number of useful species listed in Usher, __-, number of weed species in composite weed list compiled in Plant Taxonomy Laboratory.